
The Delphi 3 Novelty Store: 2
by Brian Long

Last month we saw the splendid
new environment in Delphi 3

and spent some time looking at its
new Code Insight features and
exploring the VCL’s new Business
Insight architecture. This month it
is time for Active Insight.

Before we start I must mention
again that this article is based on
pre-release software and so some
parts might be inaccurate when
compared with the shipping prod-
uct (although there are no firm de-
tails at the time of writing, we hope
that Delphi 3 may be released by
the time you read this). There are
some notes at the end of this article
on some aspects of last month’s
installment which need updating.

Are you sitting comfortably?
Then I’ll begin.

Active Insight
This seems to be the all-new
Borland marketing term for the
Internet, COM, DCOM, ActiveX and
distributed application features in
Delphi 3. A lot of the COM and
DCOM support needs a good
knowledge of COM and OLE me-
chanics to appreciate. Or perhaps
it just needs someone with a good
knowledge of COM and OLE to ex-
plain it well... Anyway, I will men-
tion the salient factors and leave it
to someone else to explain all the
gory details with useful examples
at length in a future article. I cannot
pretend to have a full under-
standing of all these features yet,
but I will strive to accurately repre-
sent what is available in the new
version.

COM, DCOM And OLE
The Component Object Model
(COM) is based around a binary
standard and is intended to pro-
vide a way of making classes avail-
able to executables other than the
one they are defined in. Being a
binary standard and not a source
code standard means that classes
can cross language barriers and
hopefully platform barriers.

The binary standard dictates
how a class virtual method table
(VMT or v-table) is laid out and also
dictates how COM objects commu-
nicate. Additionally, to be COM-
compliant a class must have a
registered class ID, be able to be
externally instantiated by a class
factory and support lifetime
management.

DCOM, or Distributed COM, al-
lows a COM class to be instantiated
on a different machine. OLE
(Object Linking and Embedding) is
a specific implementation of COM
that Microsoft have created, giving
many facilities over and above
what COM requires.

Interface Support
In order to properly support COM
and DCOM, Borland have now spe-
cifically implemented the concept
of a class interface. If you have
played with the Tools API you will
be familiar with the notion of a
class interface: a class that can de-
fine public methods and proper-
ties, but with no method
implementations or data fields.
The idea is to represent the
interface to a class with no hint as
to how or where it is implemented.
The implementation is done
elsewhere.

It is quite a similar concept to an
import declaration for a routine in
a DLL. In that case you specify the
interface to a subroutine, however
you typically also specify where
the routine is implemented. With
an interface you do not need to
know, let alone specify, where the
class is implemented. That infor-
mation is stored in the Windows
registration database (if the class
is a COM class).

To support interface classes bet-
ter, Borland have added a new data
type: the interface. An interface is
much like a class, but is defined
with the already reserved word in-
terface instead of class. The nam-
ing convention is that classes start
with a T (for Type) and interfaces

start with an I (for Interface). The
rules for what can go in an interface
are much as just described above,
although you can optionally spec-
ify an interface ID (IID).

An IID is one of two commonly
used types of GUID and uniquely
identifies an interface class. All the
registered IIDs can be found in
the Windows registry under
HKEY_CLASSES_ROOT\Interface. A
GUID is a globally unique identifier
that is stored in the registry and
used to identify interfaces and
COM classes. GUIDs are 16 byte
binary values and are specific in-
stances of universally unique iden-
tifiers (UUIDs). The System unit
defines a TGUID record type (see
Listing 1) although GUIDs are typi-
cally represented in a string
format, for example:

’{2835826F-7E60-11D0-9FEA-A42B00C10000}’

Delphi 3 has the functions
GuidToString and StringToGuid in
the ComObj unit to convert between
these formats (the OLEAuto unit has
the equivalent ClassIDToString and
StringToClassID). As a convenience
measure a TGUID typed constant
can now be initialised with an ap-
propriately formatted string. This
means that instead of writing this
rather cumbersome expression:

const
 AGuid: TGUID =
 (D1:$2835826F;D2:$7E60;
 D3:$11D0;D4:($9F,$EA,$A4,
 $2B,$0,$C1,$0,$0));

you can write the more naturally
GUID-like:

TGUID = record
 D1: Integer;
 D2: Word;
 D3: Word;
 D4: array[0..7] of Byte;
end;

➤ Listing 1

8 The Delphi Magazine Issue 21

const
 AGuid: TGUID =
 ’{2835826F-7E60-11D0-9FEA-A42B00C10000}’;

Additionally, when calling a proce-
dure or function that takes a con-
stant or value parameter of type
TGUID, an interface type (such as
IUnknown) can be passed and the
compiler will extract the IID and
pass that instead.

The other type of GUID is a class
identifier or class ID (CLSID) and is
stored in the registry by an OLE
server to identify an application
that implements a COM class.
These can be found under
HKEY_CLASSES_ROOT\CLSID.

The pre-defined Windows COM
interfaces were declared in the
Delphi OLE2 unit as normal classes
(there was no previous alterna-
tive). Now the new ActiveX unit and
System unit re-implement them as
proper interfaces.

In much the same way as all
classes inherit ultimately from
TObject, all interfaces inherit ulti-
mately from IUnknown, the most
basic interface. Listing 2 shows the
old OLE2 and new System unit
versions of IUnknown.

Note that in an interface you can
specify an out parameter where we
might normally use a var parame-
ter. Out parameters are slightly less
efficient than var parameters be-
cause the compiler generates code
to automatically resource manage
the out parameter reference. Be-
cause of this it is recommended
you only use out parameters with
COM object methods.

Interfaces can inherit from one
another in just the same syntactic
way as classes, but there is no con-
cept of increasing the functionality
of an interface, because it has no
functionality. An interface that in-
herits from another interface just
makes a bigger interface.

Multiple Inheritance?
A question arises as to how you
actually use interfaces. Interface
definitions exist to represent the
well-defined interface to some
object. This object may exist in a
DLL, in another EXE or indeed on
another machine. Alternatively
you may need to implement the

interface in a real class yourself in
your own EXE. To do this requires
some syntax that looks very much
like multiple inheritance (uh-oh) as
shown in Listing 3. In fact Delphi 3
does not support multiple inheri-
tance, but it does allow you to spec-
ify that a class will implement one
or more interfaces by specifying
those interfaces along with the
ancestor class in the class declara-
tion. You still cannot inherit from
more than one class (phew!).

If one interface is included
several times into a class due to it
being specified in some of a class’s
ancestors, the compiler ensures
that it is only considered once.
Once you have specified that a
class implements an interface, you
need to implement the methods
that it defines. Unfortunately,
because you can specify multiple
interfaces you may get a clash of
methods from different interfaces
with the same name.

In order to resolve this issue you
can employ method resolution

clauses. This allows you to specify
which class method will implement
which of the clashing interface
methods. Listing 3 shows the idea.
These can also be used to simply
implement an interface method
using a class method of a different
name.

Lifetime Management
Since all interfaces inherit ulti-
mately from IUnknown, any class
that implements an interface will
have to implement the methods
shown in Listing 2. _AddRef and _Re-
lease should respectively incre-
ment and decrement an internal
counter. This allows the implemen-
tation of an interface to keep track
of how many references exist to an
interface. When the counter
reaches zero, the object should
free itself.

As another convenience meas-
ure the System unit defines a class
TInterfacedObject which inherits
from TObject and implements
IUnknown’s methods (there is an

//As defined in the OLE2 unit
IUnknown = class
public
 function QueryInterface(const iid: TIID; var obj): HResult; virtual;
stdcall; abstract;
 function AddRef: Longint; virtual; stdcall; abstract;
 function Release: Longint; virtual; stdcall; abstract;
end;

//As defined in the Delphi 3 System unit
IUnknown = interface
 [’{00000000-0000-0000-C000-000000000046}’] //This is IUnknown’s IID
 function QueryInterface(const IID: TGUID; out Obj): Integer; stdcall;
 function _AddRef: Integer; stdcall;
 function _Release: Integer; stdcall;
end;

➤ Listing 2

IInterface1 = interface
 procedure NotAClash;
 procedure NameClash;
end;

IInterface2 = interface
 procedure UniqueName;
 procedure NameClash;
end;

TExampleClass = class(TComponent, IInterface1, IInterface2)
 procedure IInterface1.NameClash = NameClashA;
 procedure IInterface2.NameClash = NameClashB;
public
 procedure UniqueName;
 procedure NotAClash;
 procedure NameClashA;
 procedure NameClashB;
end;

➤ Listing 3

10 The Delphi Magazine Issue 21

associated class reference TInter-
facedClass).

The _AddRef and _Release meth-
ods in TInterfacedObject imple-
ment the required reference
counting whilst QueryInterface
checks to see if a specified inter-
face is implemented by the class
and if so returns a reference to it.
So this class is a good base class for
COM-style objects. TInterfaced-
Object itself is not a COM class
since it does not have any class
factory support.

Much like the mechanism for de-
fining object references you are
also able to define interface refer-
ences. You can assign one interface
reference to another and Delphi
automatically generates code to
call _Release for the old interface
being overwritten (if there is one)
and _AddRef for the one being
assigned. Additionally, if an inter-
face reference goes out of scope,
_Release gets called. This means
that you can forget about having to
destroy objects if you talk to them
solely through interfaces. Addi-
tionally, you can forget about
_AddRef and _Release because they
get called automatically for you.

Given an object that implements
a certain interface, you can assign
the object reference to an interface
reference provided the declared
type (not the actual type) of the
object reference implements the
interface. This is checked at com-
pile time and an error is generated
if the requirements are not met.

Interface Querying
The as operator normally gets used
in an expression like ObjectRef as
ClassType. Listing 4 shows an exam-
ple statement and its effective
implementation.

Delphi 3 gives us another use for
the as operator. You can get hold
of an interface reference from an
object reference or another inter-
face reference using as. This is
called interface querying and al-
lows a more flexible way of getting
interfaces than the approach de-
scribed above. It caters for object
references that are declared of an
ancestor type and would give
compile time errors using direct
assignment. The expression:

ObjOrIntRef as InterfaceType

will attempt to resolve to an inter-
face reference of the specified in-
terface type, or nil, so long as one
of the following are true:
➣ ObjOrIntRef is a reference

declared as a class type that
implements IUnknown, or

➣ ObjOrIntRef is a reference
declared as an interface type.

In order for the compiler to ensure
these requirements are met the
expression gets compiled as:

IUnknown(ObjOrIntRef) as
 InterfaceType

If the reference is nil, the result of
the whole expression becomes nil.
If not, a call is made to the refer-
ence’s QueryInterface method
which gets passed the IID of the
specified interface. If the interface
is found, the assignment is suc-
cessful, otherwise an EIntfCastEr-
ror exception is raised. Listing 5
shows an example statement and
its corresponding implementation.

OLE Automation
The OLEAuto unit is still supplied

in the VCL for Delphi 2 compatibil-
ity, but now it is in Delphi 3’s
LIB\DELPHI2 directory which must

be added to the unit search path.
However, OLE automation is now
better achieved using the ComObj
unit. For a start, the OLEAuto unit
cannot be compiled into a package
and so therefore neither can any-
thing that uses it. ComObj offers a
CreateOLEObject function that can
be used just as it could before,
however the new one returns an
IDispatch interface as opposed to a
variant. This IDispatch can still be
assigned to a variant (after all, the
variant returned by Delphi 2’s
CreateOLEObject contains an IDis-
patch reference).

An IDispatch interface repre-
sents an object that supports OLE
automation, ie a COM object that
has an Invoke method which can
dispatch calls to appropriate rou-
tines at runtime.

Delphi 3 does things slightly dif-
ferently to the earlier version when
creating an OLE server (via the
Object Repository which looks like
Figure 1). Rather than just manu-
facturing one unit with a TAutoOb-
ject descendent in, it now makes
two units. The new interface li-
brary unit contains an interface
inherited from IDispatch that de-
scribes your OLE Automation serv-
er COM object. It also implements
a simple coclass (component ob-

var
 List: TListBox;
 Sender: TObject;
...
List := Sender as TListBox; // this is implemented by the following code
if Sender = nil then
 List := nil
else
 if not Sender.InheritsFrom(TListBox) then
 raise EInvalidCast.Create(’Invalid class typecast’)
 else
 List := TListBox(Sender);

➤ Listing 4: The as operator and its implementation in normal use

var
 Dispatch: IDispatch;
 OLEServer: TAutoObject;
...
Dispatch := OLEServer as IDispatch; // this is implemented by the following code
const
 IDispatchID: TGUID = ’{00020400-0000-0000-C000-000000000046}’;
...
if OLEServer = nil then
 Dispatch := nil
else
 if IUnknown(OLEServer).QueryInterface(IDispatch, Dispatch) <> 0 then
 raise EIntfCastError.Create(’Interface not supported’)

➤ Listing 5: The as operator in its new guise of interface querying

12 The Delphi Magazine Issue 21

ject class) that uses OLE system
calls to create an instance of your
server object on the current
machine (Create, for COM support)
or on a remote machine (Create-
Remote, for DCOM support).

This library unit can be used in
any other Delphi project that needs
to talk to the object. The unit is
generated as a translation of the
project’s type library (binary .TLB
file) which is maintained by Delphi,
and gets regenerated whenever the
type library is refreshed. Because
of this, you should not add
anything into the unit as it will be
overwritten.

The other unit is much like it was
in Delphi 2 except the TAutoObject
descendant also implements your
new COM interface. Also the initial-
isation section creates a class
factory specific to your OLE server.

In order to add new properties
and methods into the interface and
class simultaneously, you can get
Delphi to do all the typing with Edit
| Add To Interface... or by right
clicking and choosing Add to In-
terface... when in the class imple-
mentation unit. You can also use
the type library editor (see later).

When your server is complete it
needs to have its CLSID, IID and
also its type library ID and some
other miscellaneous bits of data
stored in the registry. Just running
the server will do this, but it is
usually better to run the server
with a /regserver parameter. This
ensures that the server starts, reg-
isters and terminates without
messing around creating forms and
thereby potentially taking a long
time.

Given a project XXXX.DPR which
implements an interface IYYYY in a
COM class TYYYY, the CLSID is de-
fined in the library unit as the con-
stant Class_YYYY. The IID is
specified in the interface: you can
just refer to IYYYY if you need ac-
cess to the IID. The type library ID
is a constant called LIBID_XXXX. The
interface unit itself is called
XXXX_TLB.PAS and is generated
from the type library XXXX.TLB.

In order to create COM objects
on remote machines you need
some DCOM plumbing to be pre-
sent. Windows NT 4 has this out of

the box but Windows 95 does not.
You will need to use Borland’s
OLEnterprise package or get hold of
Microsoft’s DCOM for Windows 95
package.

Dual Interfaces
Historically, Delphi’s only solution
to controlling an automation serv-
er was to use CreateOLEObject in
association with a variant contain-
ing an IDispatch. All the calls to
methods and properties you write
in your source code are packaged
up into call descriptors with asso-
ciated parameter lists. The com-
piler generates code to call the
System unit routine _DispInvoke
which simply calls whatever rou-
tine the VarDispProc pointer points
to, giving it the relevant call
information.

VarDispProc defaults to pointing
at some code that generates run-
time error 222 or, more usually, an
EVariantError exception. When
either the OLEAuto or ComObj unit is
added to a uses clause in your pro-
ject, their initialization sections
ensure VarDispProc is routed to a
procedure they both implement
called VarDispInvoke.

This uses the IDispatch.Invoke
method to attempt to call the rele-
vant routine and pass the appropri-
ate parameters. If it fails, you get a
run-time exception. The point be-
ing that the appropriate routines
are only located and verified at run-
time. The compiler is unable to
check the validity of calls or pa-
rameters as it has no declaration
available for the automation server
object. This is often referred to as

➤ Figure 1

uses
 ComObj,
 Auto_TLB; { Auto-generated server object interface definition unit }
var
 //Note the variable is an interface inherited from IDispatch
 AutoComServer: IServer;
...
//This internally uses QueryInterface to get an IDispatch descendent
AutoComServer := CreateOleObject(’Auto.Server’) as IServer;

➤ Listing 7

uses
 ComObj; //used to use OLEAuto
var
 //This is a variant and uses the IDispatch.Invoke method
 //When OLE properties/methods are accessed, they are packaged
 //into calls to VarDispInvoke in OLEAuto or ComObj
 AutoOleServer: Variant;
...
AutoOleServer := CreateOleObject(’Auto.Server’);

➤ Listing 6

14 The Delphi Magazine Issue 21

late binding, or run-time call
resolution.

Now that we have interfaces
available, we have another option.
Provided we can get hold of an in-
terface for the COM object then we
can take advantage of early bind-
ing, or compile-time call resolution.
The compiler will generate code to
directly access the methods via the
virtual method table.

When you call ComObj’s Create-
OLEObject you can assign the return
value directly to an interface refer-
ence variable (using the as opera-
tor as described earlier to perform
interface querying). Then when
you call a method or property of
the object the compiler can verify
that it actually exists in the
interface and call it directly.

A COM object is said to be acces-
sible through dual interfaces if you
can access its methods and prop-
erties through both the IDis-
patch.Invoke method (usually via a
variant) and also the VMT (via an
interface definition). Listings 6 and
7 briefly show some syntax for cre-
ating an instance of an OLE server
using the two approaches, where
the class was specified simply as
Server when created in a project
AUTO.DPR.

If you do have an interface for the
target COM object, which may or
may not support OLE automation
(ie may or may not implement the
IDispatch interface) then you can
also opt for CreateComObject or
CreateRemoteComObject. These take
class IDs, not ProgIDs (remember
these are available as constants in
the interface unit).

Because Delphi also makes a sim-
ple component object class in the
interface library unit, there is one
extra alternative which amounts to
the same as Listing 7. The call to
CreateOleObject in the listing can
be replaced with:

AutoComServer :=
 CoServer.Create;
 { or CreateRemote(
 ’Remote Machine Name’) }

The safecall calling convention is
used to implement methods of dual
interfaces in Delphi. This is auto-
matically dealt with when using the

Delphi OLE Automation tools.
Safecall is like a cross between
register and stdcall. It operates
just the same as stdcall but uses
CPU registers in preference to the
stack for passing parameters. Addi-
tionally, a safecall function will
have a default return value (unlike
other functions) of S_OK (which is
defined as 0) and can deal with
errors in an OLE-safe way.

If you did not write the COM
object or OLE server that you need
to talk to then you can generate an
interface for it so long as you have
a type library (see later) for it.

COM Classes
TComObject implements the basic
functionality required for COM
objects. This includes being regis-
tered and the ability to be exter-
nally created by a class factory
(there is a TComObjectFactory class
available for this). It also supports
OLE exception handling, aggrega-
tion (the Controller property re-
turns an IUnknown reference to the
controller object) and the safecall
calling convention necessary for
dual interfaces.

TTypedComObject inherits from
TComObject and implements the
IProvideClassInfo interface to pro-
vide type information. A type li-
brary is necessary for this class.
Delphi supports making type li-
braries as explained later.

The variable ComServer is an ob-
ject of type TComServer and is de-
fined and created in the ComServ
RTL unit. The ComServ unit is used
in COM servers (modules that im-
plement COM or OLE classes) and
can only be used in an EXE or DLL:
it cannot be compiled into a pack-
age. ComServer replaces the Auto-
mation object from the OLEAuto unit
and can be used to identify why the
server was launched (for example
for the purpose of OLE Automation
or class ID registration). Its main
job is to track which COM or OLE
objects get instantiated and de-
stroyed and generally make your
project act like a COM server
should.

Class Factories
Class factories are used to create
instances of a specific COM object

type. A class factory is restricted to
creating instances of a specified
class or descendants of that class.
The base class is specified in the
constructor for the class factory.
When another application calls the
Windows CoCreateInstance or Co-
GetClassObject APIs, or the equiva-
lent Delphi CreateComObject or
CreateOleObject functions a class
factory is used to create the object
in the server app.

Delphi supplies a class factory
type for the COM class types it im-
plements. The class factories in a
Delphi application are held in a list
in an object of type TComClassMan-
ager called ComClassManager (from
the ComObj unit). You can use Com-
ClassManager to locate the class fac-
tory for a given class type or class
ID. The ComServer object performs
necessary lifetime management on
the factories in ComClassManager’s
list. For example when the last
COM object in the server is de-
stroyed, ComServer frees all the fac-
tories and terminates the program.

The automation class that gets
auto-generated in a Delphi 3 OLE
Automation server has a class fac-
tory manufactured for it. The ini-
tialisation section of one of the
units calls:

TAutoObjectFactory.Create(
 ComServer, TServer,
 Class_Server,
 ciMultiInstance)

This creates a TAutoObjectFactory
for the TAutoObject descendant
type TServer where Class_Server is
the OLE Automation class ID and
the last parameter dictates how
many instances of type TServer can
be manufactured by one server
application.

Because of class factories, we
have several options for instantiat-
ing a COM object. We can simply
call the constructor for the class
(this must be done if the class does
not have a registered class ID). The
constructor for TComObject actually
uses the relevant class factory to
construct itself. We can manually
use the class factory to construct
an instance. Alternatively we can
call CreateComObject or Create-
OleObject from the ComObj unit,

May 1997 The Delphi Magazine 15

which boil down to Windows OLE
DLL calls. Windows will indirectly
use the class factory to create the
object as well. Each of the state-
ments in Listing 8 would be accept-
able to create an instance of a
TServer class that implements the
IServer interface which has a
registered class ID Class_Server.

The first two options are only
viable if the class is implemented in
the current EXE or DLL that we are
writing.

One Step ActiveX
An ActiveX is the new term used for
what used to be called an OCX
(with a few differences here and
there). This means that ActiveXs
can be embedded into Visual Basic
and C++ applications (amongst
others), as well as Web pages.
OCXs and ActiveXs are both spe-
cial cases of in-process OLE serv-
ers: OLE objects in DLLs that act as
visual controls. Historically, OCX
and ActiveX controls have been
tricky to write. The development
kits were written for C++ develop-
ers and support in Delphi was left
to third parties. Now ActiveX
controls are as easy to make as
native Delphi components.

To make an ActiveX control you
need an ActiveX Library open (a
project set up to make an ActiveX
binary DLL file). You can choose
one from the ActiveX page of the
Object Repository. If you do not
have one set up, one is made for
you when you choose ActiveX
Control from the repository.

Having chosen to make an
ActiveX, the ActiveX Control
Wizard (Figure 2) asks you for the
VCL component class to base the
ActiveX on, the name of the Ac-
tiveX, the unit name and project
name (if there is no ActiveX Library
open). You can also request an
About box form to be added in
along with version information and
design-time licensing support. The
list of VCL classes will include only
TWinControl based components
that do not rely on being connected
to another control.

When the ActiveX files are gener-
ated, the code in the various units
is reasonably sizeable, with much
of it being dedicated to surfacing

the component properties into
the ActiveX properties. Once the
ActiveX is complete and you have
added all the code that you want to,
you can use Register ActiveX
Server from the Run menu to make
the control available to other appli-
cations. Unregister ActiveX Server
removes any trace of the control
from the registry.

Additionally, the Project menu
has Web Deploy Options and Web
Deploy menus. The Web Deploy
Options item lets you specify a tar-
get directory for the OCX and one
for a sample HTML page that links
to the ActiveX. You can also specify
a URL that will be used when the
HTML page is accessed via the
Web. Additionally you can choose
to employ Microsoft Cabinet com-
pression and code signing (which
requires a credentials file) and
specify which, if any, additional
files (such as packages) to deploy.
The Web Deploy menu item deploys
your files according to the chosen
options.

Property Pages
You can go back to the Object
Repository and choose to make a

property page for your ActiveX.
This is a form-like thing that can be
used in the design-time environ-
ment of whatever product is mak-
ing use of the ActiveX, rather like a
component editor, typically to set
the values of several properties. A
TPropertyPage descendant has two
methods for taking changed
property values from the user
(UpdateObject) and for surfacing
property values into the property
page (UpdatePropertyPage).

The property page is invoked
from the ActiveX control’s
DefinePropertyPages method. Com-
ments in that method implementa-
tion tell you that you simply need
to use the property page unit and
call DefinePropertyPage, passing
the class ID constant of the
property page in question.

ActiveForm
ActiveX controls allow you to pack-
age a VCL component into an em-
beddable control. We also have the
option of making an ActiveX that
contains a whole form, called an
ActiveForm. This again comes from
the ActiveX page of the Object
Repository and offers you similar

➤ Figure 2

var Server: IServer;
...
//Construct the object directly
Server := TServer.Create;
Server :=
 TServer.CreateFromFactory(ComClassManager.GetFactoryFromClass(TServer),
 nil);
//Use the class factory to create the object
Server := ComClassManager.GetFactoryFromClass(TServer).CreateComObject(nil)
 as IServer;
Server :=
 ComClassManager.GetFactoryFromClassID(Class_Server).CreateComObject(nil)
 as IServer;
//Use Windows to create the COM object
Server := CreateComObject(Class_Server) as IServer;

➤ Listing 8

16 The Delphi Magazine Issue 21

choices about target file name, and
design-time license support etc.

There are some differences in
properties between a form and an
ActiveForm. For example, Border-
Style is replaced with AxBorder-
Style (which has different values:
afbNone, afbSingle, afbRaised and
afbSunken). Also ClientHeight and
ClientWidth are gone as are
FormStyle and WindowState.

The current joke is that if you
don’t know Java and aren’t too
creative with HTML or JavaScript,
you can write all your fancy Web
stuff in a Delphi ActiveForm and get
your Web page to link to the
resultant ActiveX control.

For an Intranet this would prob-
ably be a reasonable approach. If
other Delphi applications abound
in the company, then ActiveForms
and the package support should
make any required downloads
from the network or Internet rea-
sonably small: the package files are
only required once on any ma-
chine. Things are potentially even
better if you put the packages on an
available network drive.

Type Libraries
OLE supports the concept of a type
library. This is a binary file that
allows other development tools to
easily create interfaces to your
classes and allows applications to
find out what interfaces, methods
and properties a COM class sup-
ports. Standard binary type librar-
ies have a .TLB extension and can
be shipped as separate files, or
linked into applications as re-
sources. Delphi automatically cre-
ates type libraries for OLE
Automation servers, ActiveX con-
trols and ActiveForms and binds
them to the EXE with a $R directive.
You can also create a type library
from the Object Repository or
open an existing type library using
File | Open...

The type library editor allows
you to make and customise inter-
faces, COM classes, dispatch inter-
faces and other attributes and
entities that can go in a type library
as shown in Figure 3. The informa-
tion stored in the library is used to
manufacture the Pascal library
interface unit mentioned before.

For a project called ComApp.DPR,
the library unit will be called
ComApp_TLB.PAS. As you make
modifications to the type library,
you can push the Refresh button to
update the library unit (along with
any other dependent units, such as
remote data module units or
automation server object units).

In much the same way as F12 tog-
gles between a form and the corre-
sponding form unit, F12 also
toggles between the type library
editor and the library interface
unit.

To generate Delphi interface
definitions for third-party COM ob-
jects, simply open up the type li-
brary in Delphi and press F12.
Delphi allows you to open type li-
braries stored in .TLB and .OLB
files and also compiled into .DLL,
.OCX and .EXE files. Additionally,
there is a command-line tool
TLIBIMP.EXE supplied in Delphi’s
BIN directory that does a similar
translation. As another possibility,
you can choose Project | Import
Type Library..., which lists all the
registered type libraries (although
you can still choose others) and
will (by default) place the appropri-
ate interface unit into the Delphi’s
IMPORTS directory.

Web Server Applications
I cannot do these justice in the
available space but they will no
doubt be covered later by others.

The idea is to enable simple gen-
eration of a server-based add-on
for your Web server. The Web serv-
er application can generate new
HTML pages in any way it sees fit,
but often by talking to database
tables for some of the content. The
support components in Delphi 3
make it easy for the server applica-
tion to maintain many simultane-
ous database connections.

If you do not have a Web server,
then you can download the free
single-user Microsoft Personal
Web Server (size 756Kb) from:

http://www.microsoft.com/msdownload/

 ieplatform/iewin95.htm

To make a Web server app, choose
Web Server Application from the
Object Repository and you are
then faced with a dialog (Figure 4)
that gives you the option of making
a DLL that supports both Mi-
crosoft’s ISAPI and NetScape’s
NSAPI APIs. You can also choose to
make a CGI or WinCGI application.
All options present you with a Web
Module in the project, something

➤ Figure 3

➤ Figure 4

18 The Delphi Magazine Issue 21

that looks rather like a Data Mod-
ule. The Web module has an in-
built TWebDispatcher component,
which can be manually added to
other forms or data modules. In
order to build up the logic in the
application you can use the Web
Module’s Actions property (in real-
ity the WebDispatcher’s Actions
property) to build up possible ele-
ments that may be passed in the
command-line, or path string. Each
action has an OnAction event
handler that will be triggered to
process it.

The Web Module has a couple of
events of its own, but the rest of the
functionality is implemented with
some new high level Internet com-
ponents: TPageProducer, TQuery-
TableProducer and TDatasetTable-
Producer. These can be used to gen-
erate HTML to produce nicely for-
matted Web pages as required,
potentially using information from
various data sets to make
data-aware Web pages.

TPageProducer is a generalised
HTML manufacturer where you
can have a fixed block of HTML in
the HTMLDoc TStrings property. This
can include HTML custom tags
which can then be dealt with indi-
vidually via the OnHTMLTag event to
customise the generated HTML.
The TQueryTableProducer compo-
nent is connected to a query and
will automatically generate a nicely
laid out HTML table showing the
current result set (or at least the
values for the fields specified for
inclusion in the table) when
referred to.

To make a server app for all fla-
vours of server API simply requires
you to make one project for each
format and then add in a finished
Web Module to each one. The un-
derlying VCL architecture takes
care of the rest.

Open Environment
At the high end of the Delphi 3
product line, Borland will supply
some of the software they inher-
ited from recently acquired com-
pany Open Environment.

The Entera product suite allows
you to build distributed applica-
tions with the various component
parts residing on a variety of

platforms, communicating by a
variety of standards. It supports
DCOM, CORBA and DCE. It en-
hances normal DCOM to add in a
naming service like the one which
CORBA provides. The beauty of
Entera is that the developer and
the user can ignore the complexi-
ties of talking across these various
protocols and platforms and it

allows you to break away from the
Microsoft platforms.

OLE Enterprise (which is written
OLEnterprise) is a part of Entera
that will be shipped with at least
one level of Delphi 3: this can be
used as an alternative for DCOM
and has one or two useful things in
its favour. Firstly, though the
DCOM support in NT is adequate,

Update On Part 1
Last month’s initial foray into Delphi 3 was written using a field test
several versions away from completion. Consequently, some things
have changed. Here is what I have found to be different so far.

The .DFR and .STR files that were mentioned as being temporary in
nature but were left in your project directory are now deleted by Delphi,
so you can forget about them. However, the online help for the current
field test I am using suggests that to help string translation resource
strings might get stored in a .DRC file.

The suggestion for getting the resource id of a resourcestring does
not seem to be as simple as suggested. Incorrect values are returned,
so I’ll leave that on the back burner for now.

The Package Collection Editor (PCE) was described as being able to
collect several .DPL files into one big binary file. This is true, but it is in
fact more useful. Since a .DPL on its own is only useful to a compiled
EXE (the developer needs .DCU and .DCP files) the PCE allows you to
also include a group of files related to the .DPL, which might typically
include some of the following: .DPK, .PAS, .DCU, .DFM and .DCP files.

For distributed datasets, because things were still changing, the
details of how to set up the server and client were rather vague to say
the least. In the server application you need to add in a Remote Data
Module (as distinct from a Data Module). A remote data module is a
COM class that implements an interface designed to surface your
TProvider object. When it asks you for a class, I will assume you choose
RDM and your project is called DataServer. This makes a remote data
module called RDM of type TRDM with an interface called IRDM. Having
added a TQuery and a TProvider, you connect the provider to the query
with the provider’s DataSet property. To make the provider available
through the interface, right-click on the query and choose Export query
from data module. This updates the type library and interface unit and
then implements the appropriate method in the data module class for
you.

If you don’t like the name of the exported property (it will be the same
as the name of the query) then load up the type library (View | Type
Library), expand the appropriate interface and modify the property
declaration. When you are happy, press Refresh and all the code will
update. This property name is needed in the client application.

I mentioned last month that the client’s RemoteServer component has
a ServerName property that needs to be set to the ProgID of the server.
This will be DataServer.RDM. If the server app is registered, the Server-
Name property editor will find all the appropriate ProgIDs and list them
out for you. Once chosen, it then fills in the ServerGUID property for you.
The TClientDataSet connects to the TRemoteServer via its RemoteServer
property: this basically links the server and client application together.
To choose the appropriate provider, you set the ClientDataSet’s
ProviderName property name to match the remote data module interface
property we were playing with just above. That sets the whole thing in
motion: set Active to True and the data is read across the COM link.

May 1997 The Delphi Magazine 19

that for Windows 95 is, well, tricky.
Many people have problems get-
ting it to work sufficiently (or at all,
as I can attest). Secondly, DCOM
requires the application to specify
the machine on which the COM
object can be located. So you need
one call (CreateComObject) for COM
and another (CreateRemoteComOb-
ject) for DCOM.

OLEnterprise manages to allow
the client program to use the same
code for local COM communication
as for remote COM. In other words,
CreateComObject can be used re-
gardless of where the target COM
object resides. OLEnterprise sets
things up in the registry to enable
it to get the communication be-
tween machines up and running as
and when necessary. Very briefly,
this is how OLEnterprise is used to
get a client app on one machine
talking to a server app residing and
registered on another machine.

With OLEnterprise installed on
both machines, launch the Object
Explorer on each. On the server
machine, locate the server object
in the Object Explorer, right click it

and choose Export (this updates its
registry entry). On the client ma-
chine’s Object Explorer, choose
Registry | Connect... and specify
the server machine. This should
allow you to see the server ma-
chine’s exported registry entries.
Select the appropriate entry, right-
click it and choose Import. This
adds appropriate registry entries
on the client machine. That’s all we
need the Object Explorer for so
they can now be closed.

During the OLEnterprise set-up,
you are told that the Object Fac-
tory can be set up to launch as
Windows starts: this should be
done on the server. When the client
application attempts to communi-
cate with the server object, the reg-
istry entries that are encountered
actually start it talking to a local
OLEnterprise DLL called the Ob-
ject Agent. This Agent then talks to
the appropriate server machine’s
Object Factory. The factory cre-
ates the COM object and communi-
cation can then proceed via the
Agent/Factory link with the client
application being none the wiser.

One additional program that
comes with OLEnterprise is called
the Business Object Broker. This
acts as a directory of objects that
can provide location transparency
and server failover. What this
means is that you can have many
copies of server applications dis-
tributed around an enterprise and
the broker will direct the client to
an appropriate one, and sort things
out when the server breaks.

Conclusion
There is a lot of new stuff in Delphi
3 and it will take a long while to
digest it all, but hopefully some of
the details in this and last month’s
articles will help you on your way.

Brian Long is a UK-based freelance
Delphi and C++ Builder consultant
and trainer. He is available for
bookings and can be contacted by
email at blong@compuserve.com

Copyright ©1997 Brian Long
All rights reserved

20 The Delphi Magazine Issue 21

	Active Insight
	COM, DCOM And OLE
	Interface Support
	Multiple Inheritance?
	Lifetime Management
	Interface Querying
	OLE Automation
	Dual Interfaces
	COM Classes
	Class Factories
	One Step ActiveX
	Property Pages
	ActiveForm
	Type Libraries
	Web Server Applications
	Open Environment
	Update On Part 1
	Conclusion

